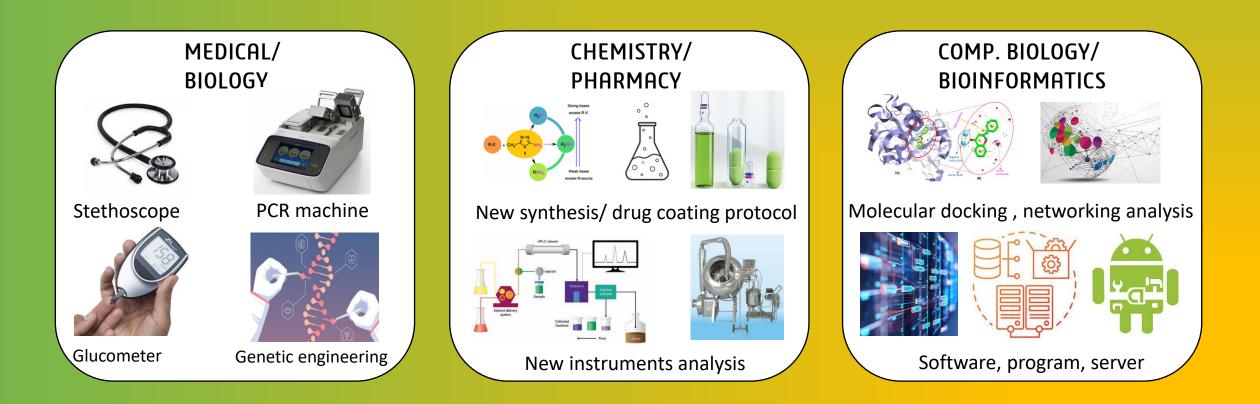
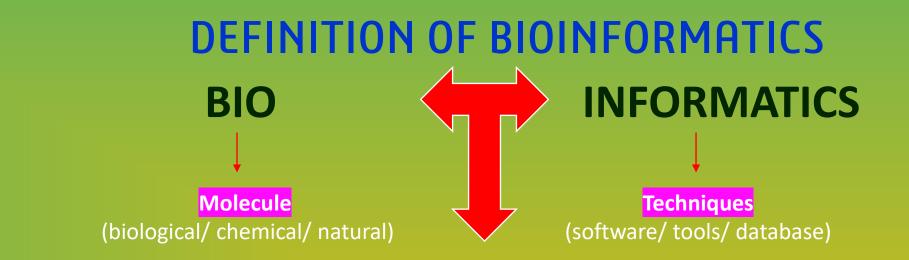
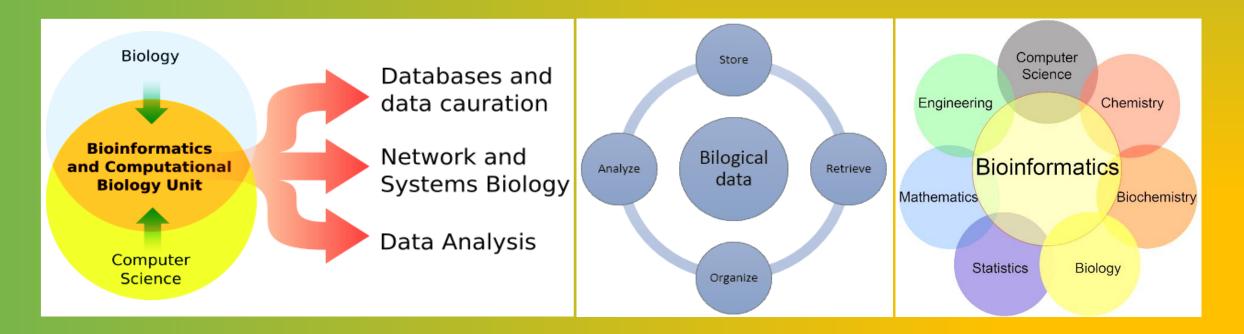
TOOLS OF BIOINFORMATICS FOR COVID-19 RESEARCH

by Dr. Shasank Sekhar Swain

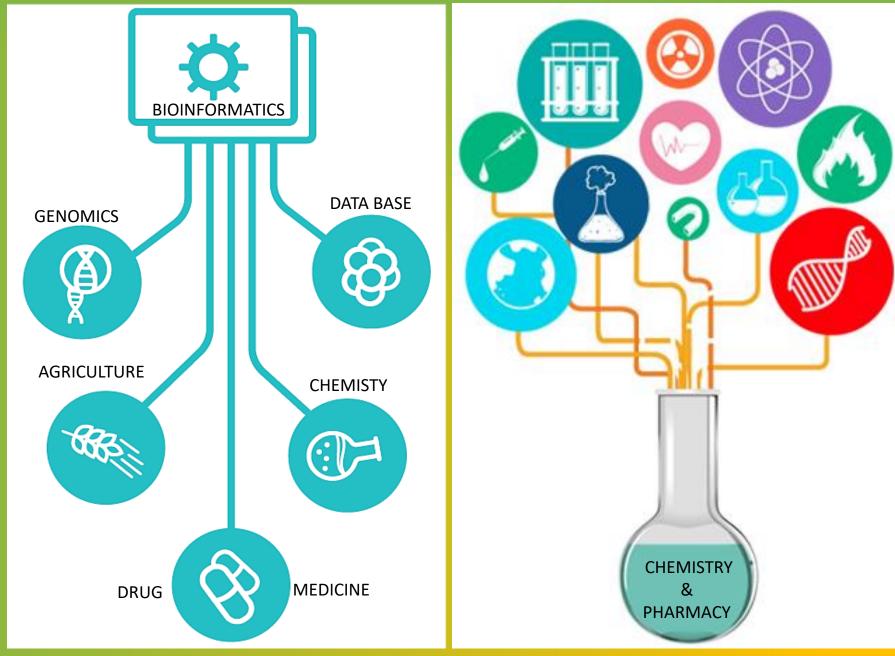
ICMR-Young Scientist Fellow

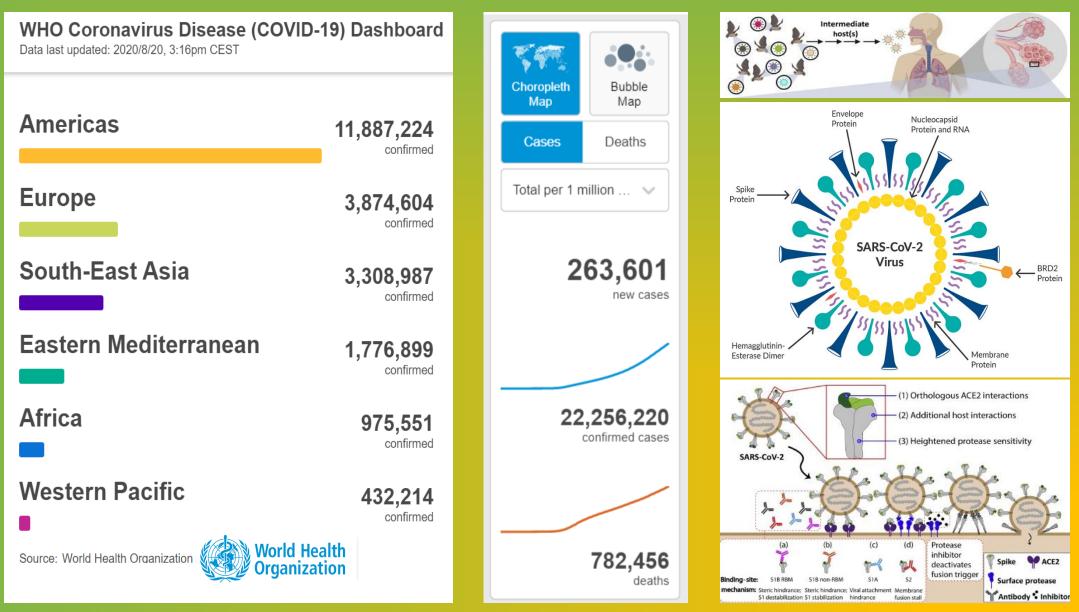

ICMR-Regional Medical Research Centre, Bhubaneswar-23, India Email: swain.shasanksekhar86@gmail.com




Definition: A device/ technique/ instrument that solves a problem by providing extra advantage in order to do some useful work.

Examples: Hammer, Screwdriver, drilling machine, Xerox machine, Google, etc.,




Application of information technology including statistics, mathematics to simplifying the storage, retrieval, analysis of biological dates

BIOINFORMATICS AREA OF APPLICATION

Coronavirus disease 2019 (COVID-19)

A novel **coronavirus** (nCoV) is a new strain that has not been previously identified in humans

TOOLS OF BIOINFORMATICS FOR COVID-19 RESEARCH

SEQUENCE LEVEL

- **1. Physicochemical properties**
- **2. Secondary structure analysis**
- 3. Conserve and mutation analysis
- 4. Phylogenetic tree analysis
- **5. 3-D structure prediction**

STRUCTURE LEVEL

- **1. Structural composition**
- 2. Therapeutic agent identification
- 3. Binding / active site prediction
- 4. Structural similarity analysis
- 5. Structural stability with drug

PHYSICOCHEMICAL PROPERTY PREDICTION

DNA

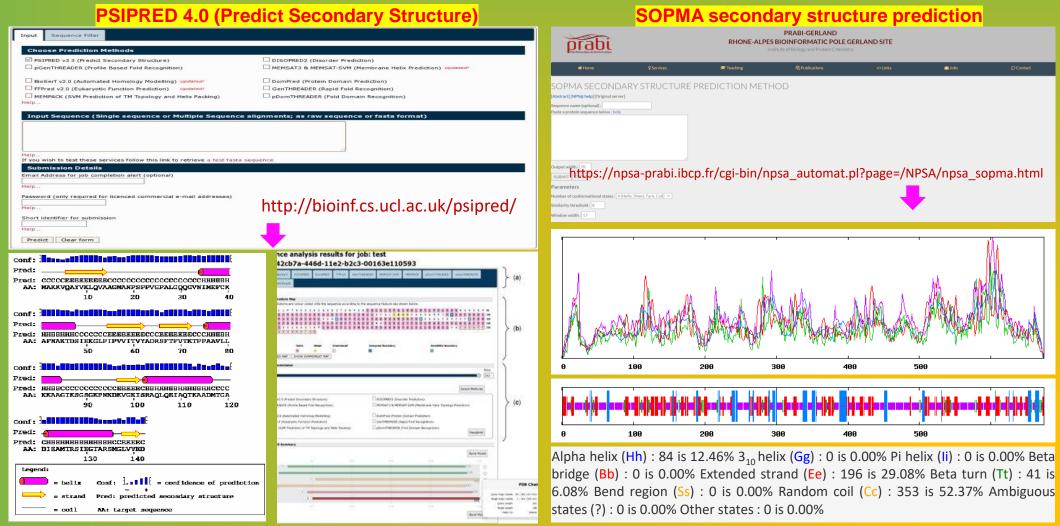
Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/TUN/COV0425/2020, complete genome

GenBank: MT499219.1

>MT499219.1 Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/TUN/COV0425/2020, complete genome

ACTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCA CTTAGTGCACTCACGCAGTATAATTAATAACTAATTACTGTCGTTGACAGGACACGAGTAACTCGTCT CTTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTTTTGTCCGG GTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAACACACGTCCAACTCAGTT CCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGGAGACACCCGTGGAGGAGGAGTCTTATCAGA CACGTCAACATCTTAAAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTT ACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTGCACCTCATGGTCATGTTATGGGTGAGG GTAGCAGAACTCGAAGGCATTCAGTACGGTCGTAGTGGAGACACTTGGTGTCCTTGTCCTCATGT GCGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAAGAACGGTAATAAAGGAGCTGGTGGCCAT

PROTEIN


>sp|PODTC2|SPIKE_SARS2 Spike glycoprotein OS=Severe acute respiratory syndrome coronavirus 2 OX=2697049 GN=S PE=1 SV=1

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFH AIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCE FQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNID GYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAA YYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFP NITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVY ADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLK PFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK KSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGG VSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSY NGVEGFTESNKKFL

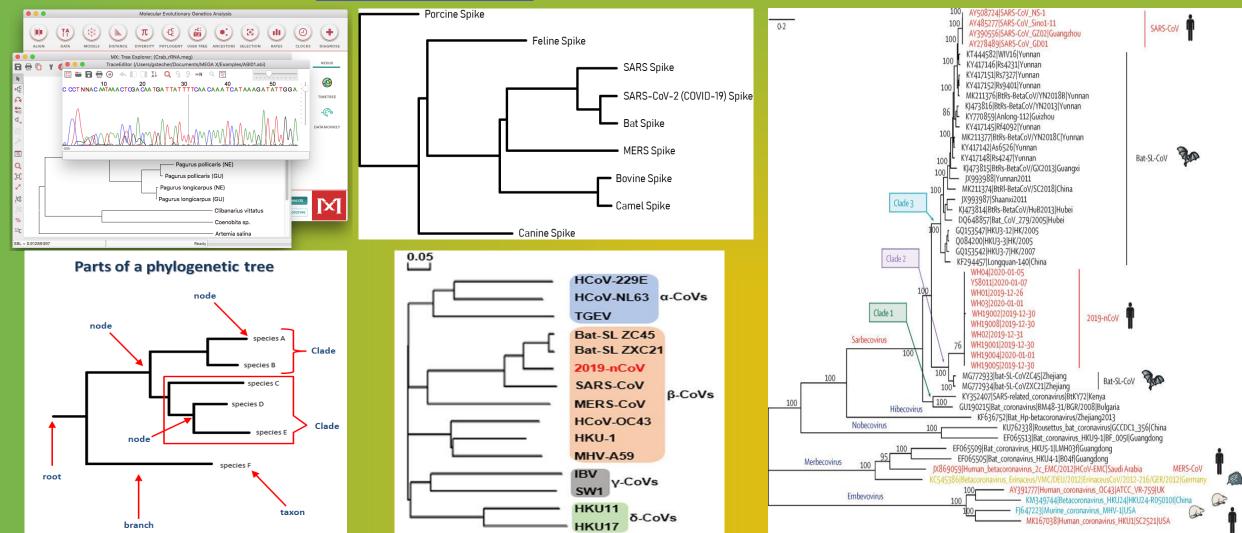
🗧 NCBI Resources 🗹 How To 🗹			7 7		Adversed a Q. Search
NCBI Resources NCBI National Center for Biotechnology Information NCBI Home Site Map (A-Z) All Resources Chemicals & Bioassays Data & Software DNA & RNA Command Structures Genes & Expression Genetics & Medicine Genomes & Maps Homology https://www.ncbi.nd	s I software point specific tasks at NCBI	Por Devant Ideal Por Devant (References / Documentation) is a tool which allows the computation TELERE, or for a user terminal problem sequence, the computation Place note that you may only fill out one of the totoware fields at a time. Enter all bases ProvITELENE accession number (AC) for example Place and Computational problem in the computation of the totoware fields at a time. Enter all bases ProvITELENE accession number (AC) for example Place and Computational problem in the computation of the totoware fields at a time. Enter all bases ProvITELENE accession number (AC) for example Place and Computation of the totoware into accession number (AC) for example Place and Computation of the totoware into accession number (AC) for example Place and Network of the totoware into accession number (AC) for example Place and Computation of the totoware into accession number (AC) for example Place accession number (AC) Computed and AC) for example Place accession number (AC) for example	ProtParam Hum 1 Control of various physical and chemical parameters for a given protein stored in Beles-Prot or the the indexidance weight, Benetical parameters for a given protein stored in Beles-Prot or (down or hypothesite), (down or hypo	LICHENCE LI	sequence, protein name or description, taxonomic data and citation information), as much annotation information as possible is added.
	amino acids composition	Total number of atoms	Negatively charged residues	Ext. coefficient	Positively charged residues
Grand average of hydropathi	city Aliphatic index	Protein as stable profil	e Estimated half-life	Molecular formula	Theoretical isoelectric point

SECONDARY STRUCTURE PREDICTION

- Accurate prediction of the exact elements of protein 3D structure is essential for any research targeting a protein.
- Predicting the formation of protein structures such as alpha helices and beta strands, while for nucleic acids, it means predicting the formation of nucleic acid structures like helixes and stem-loop structures.

https://List_of_protein_secondary_structure_prediction_programs

SEQUENCE ANALYSIS (MUTATION OR CONSERVED)

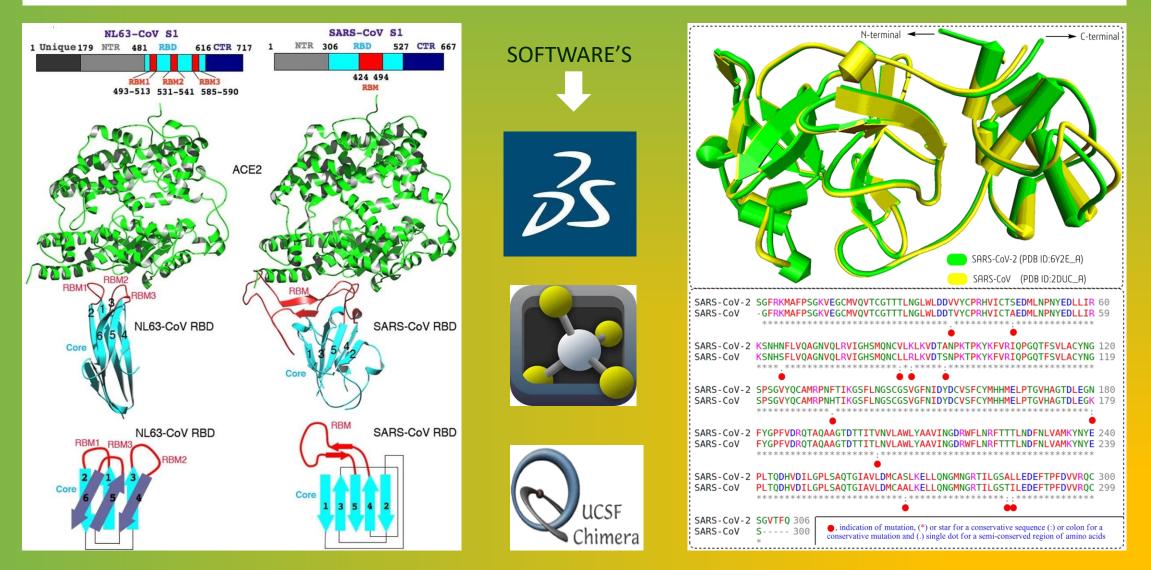

• A gene mutation is a permanent alteration in the DNA, protein sequence that makes up a gene, such that the sequence differs from what is found in most people/ region; In simply, sometimes our DNA sequence gets altered; this is called a mutation.

EMBL-EBI Services	s Resi	earch Training	Industry Al	outus Q,				EMBL-EBI 🐑 Hinxto	on				,								Q271R
Clustal O		Ŭ						◆ Feedback Sha	~		aa POSITIO N 271	Kolkata Q	_	aa POSITIO	Kolkata	STATES a Gujarat	Kerala 29	Kerala 166		1 SARS-CoV-2/29/human/2020/IND 100.0% 100.0% 2 hcdv-19/India/52/2020[EPI ISL 430468 100.0% 99.7% 3 Q)C19491.1 100.0% 99.7% 4 SARS-CoV-2/166/human/2020/IND 100.0% 99.8%	LLI, HRÉY, THOSSE, HÍ AGALAY, MY, QUÉT, LIVIEN THO A DOLLO USER OF MÉRT A CONTREMENT LLI, HRÉY, THOSSE, HÍ AGALAY, MY, QUÉT, LIVIEN THO A DOLLO USER OF MET RECOVERSING LLI, HRÉY, THOSSE MI AGALAY, MY, QUÉT, LIVIEN THO A DOLLO USER OF MET RECOVERSING
Tools > Multiple Sequence Alignment > Clustal Omega EMBL-EBI to be HTTPS by default from 1st October On the 1st October the majority of services hosted on www.ebi.ac.uk will be served over HTTPS by default. Services that are becoming HTTPS by default will automatically refored user accessing the site on insecure HTTP URLs to secure HTTPS URLs.						408 614 723	R G I (1) (4T)		N 271 408	Q R G	R R G	Q I D	Q R		consensus/90% consensus/90% consensus/80% consensus/70%	LLALIRRY TFOSSS WT AGAAYY VY UP REFLEXIVENCET TO XOCALD USET COT USET LLALIRRY TFOSSS WT AGAAYY VY UP REFLEXIVENCE TO XUGALD USET COT USET EKCTYCESSER LLALIRRY TFOSSS WT AGAAYY VY UP REFLEXIVENCE TO XVOCALD USET COT USET EKCTYCESSER LLALIRRY TFOSSS WT AGAAYY VY UP REFLEXIVENCE TO XVOCALD USET COT USET EKCTYCESSER LLALIRRY TFOSSS WT AGAAYY VY UP REFLEXIVENCE TO XVOCALD USET COT USET EKCTYCESSER					
						930 A B B B B Consensus/10% Consensus/10% R4081 930 A A A V Consensus/10% Consensus/10% </th															
sequences in any supp			ww.e	bi.ac	uk/Toc	ols/msa	/clust	•		C. Tabula of Indi	tion of am a.	no acid pre	is show num esent at the p	points of m	nutation	n for isolate	s from dif	ferent parts	s	cov pid 1 SARS-CoV-2/29/human/2020/IND 100.0% 100.0% 2 hCoV-19/India/52/2020[EPI ISL 430468] 100.0% 99.7%	D614G 561 6 64 FROGER DE LOTTO ANDE OLI ELLO E POSFORVEVE POTINTSMO ANALYCE IN CTEVENATINGO E PINONYST S REOGER DE LOTTO AND OLI ELLO E POSFORVEVE POTINTSMO ANALYCE IN CELEVINATINGO E PINONYST S
2DUC 6Y2E Consensus	SG SG	FRKMAFPS Frkmafps	GKYEG(GKYEG(NYQYTC NYQYTC	GTTTLNGLI GTTTLNGLI	HLDDTYYCI HLDDYYYCI	RHVICT RHVICT	AEDMLNPN Sedmlnpn	YEDLLIR YEDLLIR	(SNHSFLYQ (Snhnflyq	Ignyqlry Ignyqlry	IGHSMONC Ighsmonc	90 LLRLKYDTS YLKLKYDTA 1LrLKYDTa	NPKTPKYK NPKTPKYK	(FYRIQ (FYRIQ	PGQTFSYL PGQTFSYL	ACYNGSP Acyngsp	SGYYQCAN Sgyyqcan		3 QJC19491.1 100.0% 99.7% 4 SARS-CoV-2/166/human/2020/IND 100.0% 99.8% consensus/90% consensus/90% consensus/80% consensus/70%	
	RP RP	NHTIKGSF NFTIKGSF	LNGSC(LNGSC(SYGFNI Sygfni	DYDCYSFC Dydcysfc	YMHHMELP1 Ymhhmelp1	IGYHAGT Igyhagt	DLEGKFYG Dlegnfyg	PFYDRQTI PFYDRQTI	IQAAGTDTT: Iqaagtdtt:	CTLNYLAH Ctynylah	LYAAVING Lyaaving	220 DRHFLNRFT DRHFLNRFT DRHFLNRFT	TTLNDFNL TTLNDFNL	Vamky Vamky	NYEPLTQD Nyepltqd	HYDILGP Hydilgp	LSAQTGIA Lsaqtgia		cov pid 1 SARS-CoV-2/29/human/2020/IND 100.0% 100.0% 2 hCoV-19/India/S2/2020[EPI_ISL_430468] 100.0% 99.7% 3 QJC19491.1 100.0% 99.7% 4 SARS-CoV-2/166/human/2020/IND 100.0% 99.8% consensus/100% consensus/90% consensus/90% consensus/80% consensus/70%	T TS GNTFGAGAAL QIFFA'Q HAYREN GIGV TON LI YENGKLI ANDENS A TG'R QDSI SST. SALO'K, QD LI NON A'Q ALN T TS GNTFGAGAAL QIFFA'Q HAYREN GIGV TON LI YENGKLI ANDENS A TG'R QDSI SST. SALO'K QD LI NON AQ ALN
2DUC 6Y2E Consensus	ÝL YL	DMCAALKE DMCASLKE	LLQNGI LLQNGI	NGRTIL NGRTIL	GSTILEDE GSALLEDE	30 FTPFDYVRI FTPFDYVRI FTPFDYVRI) CSGYTF) CSGYTF	Q Q	https				i.ac.uk/ me.con			·	a.html	I		cov pid 1 SARS-CoV-2/29/human/2020/IND 100.0% 100.0% 2 hc0v-19/India/S2/2020[EP1 ISL 430466] 100.0% 9.7% 3 Q)C19491.1 100.0% 99.7% 4 SARS-CoV-2/166/human/2020/IND 100.0% 99.8% consensus/100% consensus/80% consensus/80% consensus/70% Consensus/70% Consensus/70%	G1124V 1121 AV 51 CONVISENT AND 10 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND 10 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND 10 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND 10 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND 10 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND 10 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND 10 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND 10 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D 0 L D SOTA S V A DRE DR NET AN NES D AV 51 CONVISENT AND VD 0 C 0574CC DAYFEMENTS D AV 51 CONVISENT AND

PHYLOGENETIC TREE ANALYSIS/ BUILDING

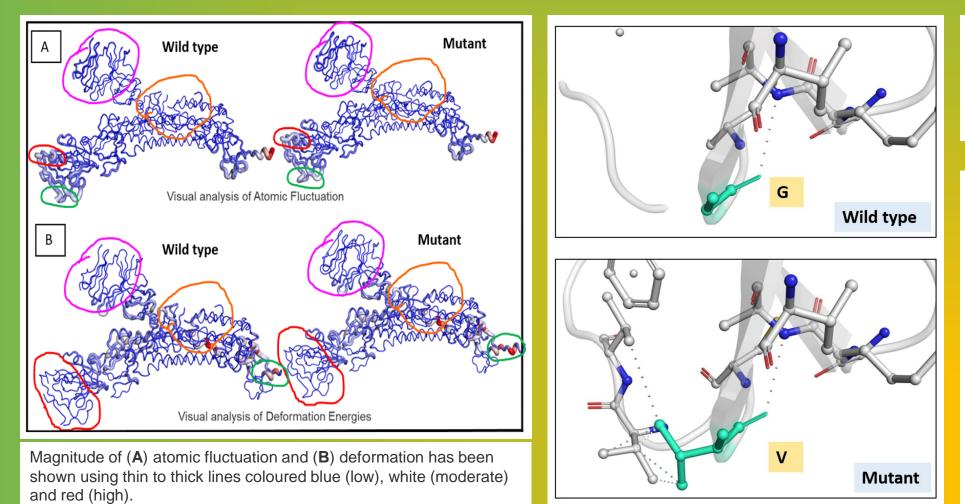
Phylogenetics is the study of evolutionary relationships among biological entities

Most usable software's: MEGA, Dendroscope, FigTree, Phylotree, ggtree



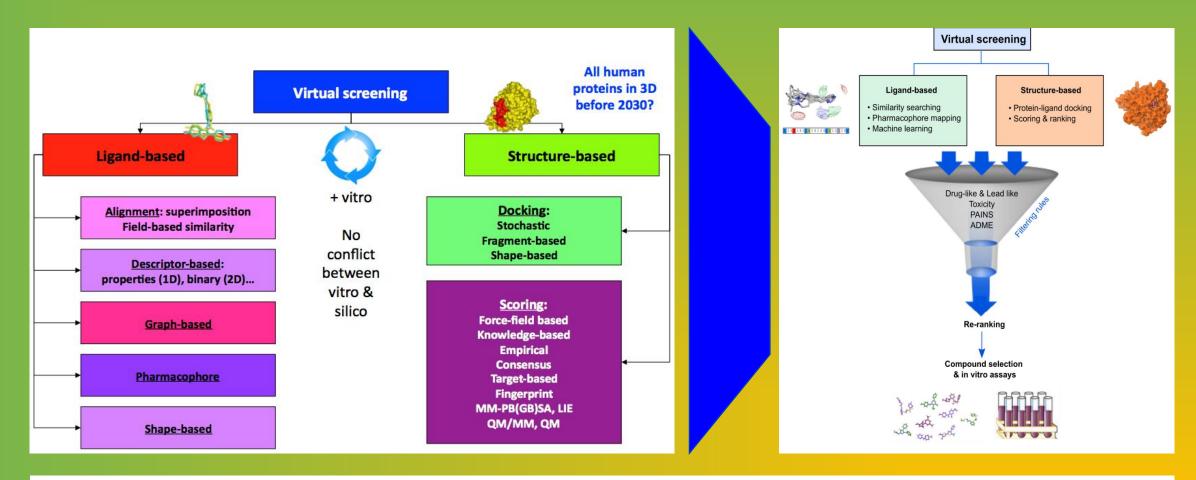
https://molbiol-tools.ca/Phylogeny.htm

https://en.wikipedia.org/wiki/List_of_phylogenetics_software

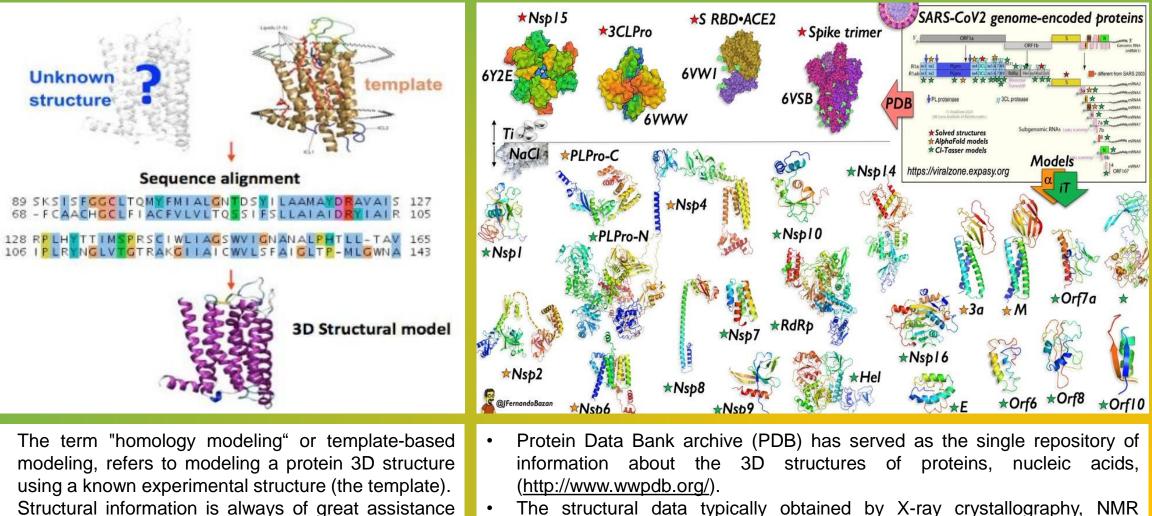

STRUCTURAL SIMILARITY ANALYSIS

• An image quality metric that assesses the visual impact of a protein structure characteristics/ building blocks

STRUCTURAL STABILITY ANALYSIS IN MUTANT PROTEIN


- Proteins are highly dynamic molecules, whose function is intrinsically linked to their molecular motions (analysis carried out by the tool, DynaMut).
- Despite the pivotal role of protein dynamics has led to most structure-based approaches for assessing the impact of mutations on protein structure and function relying upon static structures.

Wild-type and mutant residues are coloured in light-green and are also represented as sticks alongside with the surrounding residues which are involved on any type of interactions.


To correlate if changes in secondary structure are also reflected in the dynamics of the protein in its tertiary structure, performed normal mode analyses and studied protein stability and flexibility. Change in vibrational entropy energy ($\Delta\Delta$ SVib ENCoM) between the wild type Wuhan isolate and the West Bengal isolate was -4.445 kcal.mol⁻ ¹.K^{-1.} The $\Delta\Delta G$ was 0.905 kcal/mol and the $\Delta\Delta G$ ENCoM was 4.756 kcal/mol. All these suggested a stabilizing mutation in this type of spike.

DRUG DISCOVERY USING BIOINFORMATICS TOOLS

LIGAND BASED DRUG DESIGN: It is otherwise known as indirect drug design. It trusts on the awareness of different new ligand molecules that bind with the target protein molecule. (Known ligand with unknown receptor). STRUCTURE BASED DRUG DESIGN: It depends on the wisdom of three-dimensional structure of the protein molecule. Practically the structure was initially identified by X-ray crystallography which improves the aptitude to produce new drugs that fight against diseases. (Known receptor with unknown ligand).

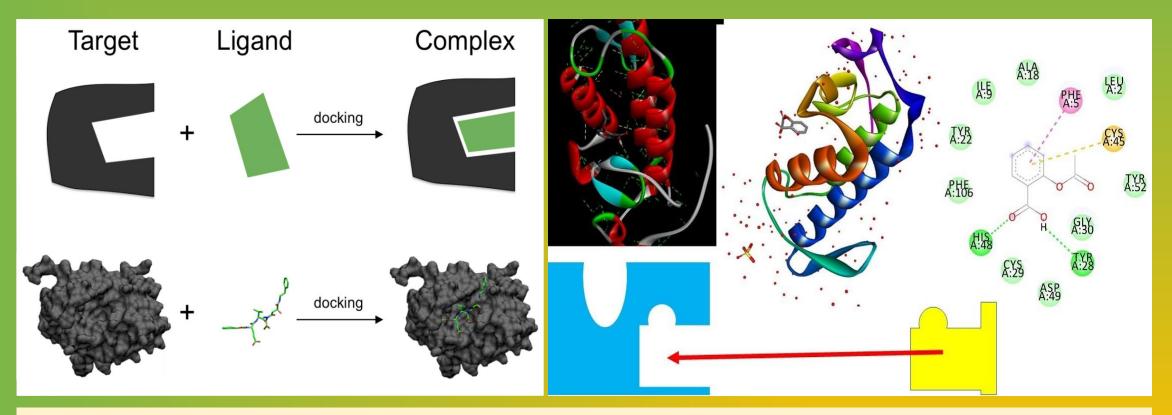
3D PROTEIN STRUCTRE MODELLING & RETRIEVAL

spectroscopy,

cryo-electron

biologists and biochemists and are freely accessible.

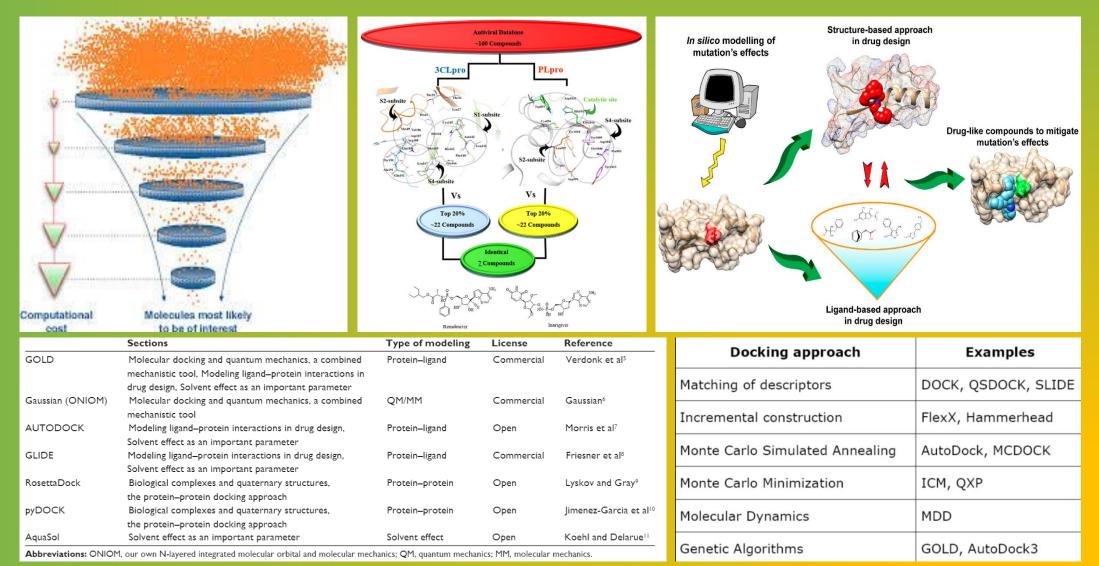
microscopy


world

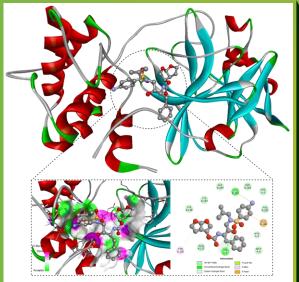
by

wide

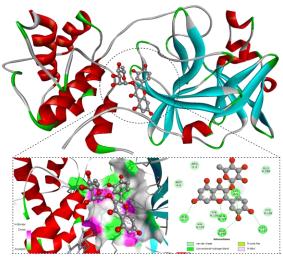
 Structural information is always of great assistance in the study of protein function, dynamics, interactions with ligands and other proteins.


CONCEPT OF MOLECULAR DOCKING

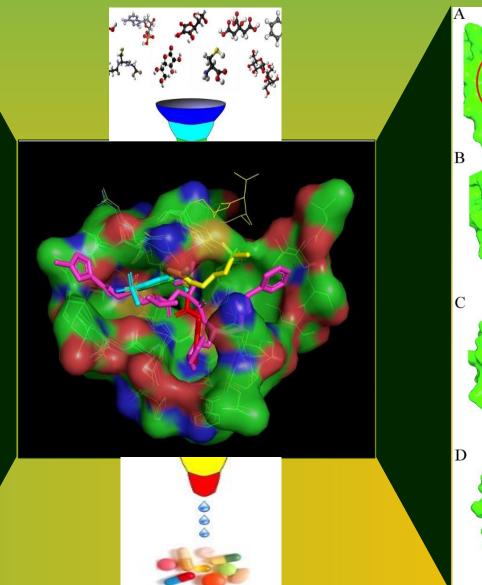
- Molecular docking, which predicts interaction patterns based on scoring function between proteins and small molecules as well as proteins and proteins, to evaluate the binding between two molecules is widely used in the field of drug screening and design.
- It is currently used as a standard computational tool in drug design for lead compound optimisation and in virtual screening studies to find novel biologically active molecules.

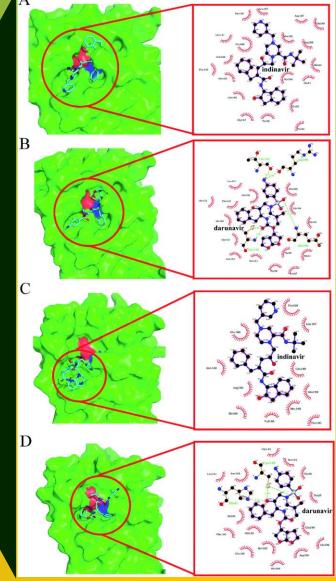

HIGH-THROUGHPUT VIRTUAL SCREENING

Virtual screening is an important part of computer-aided drug design methods. It may be the cheapest way to identify potential lead compounds, and many successful cases have proven successful using this technology

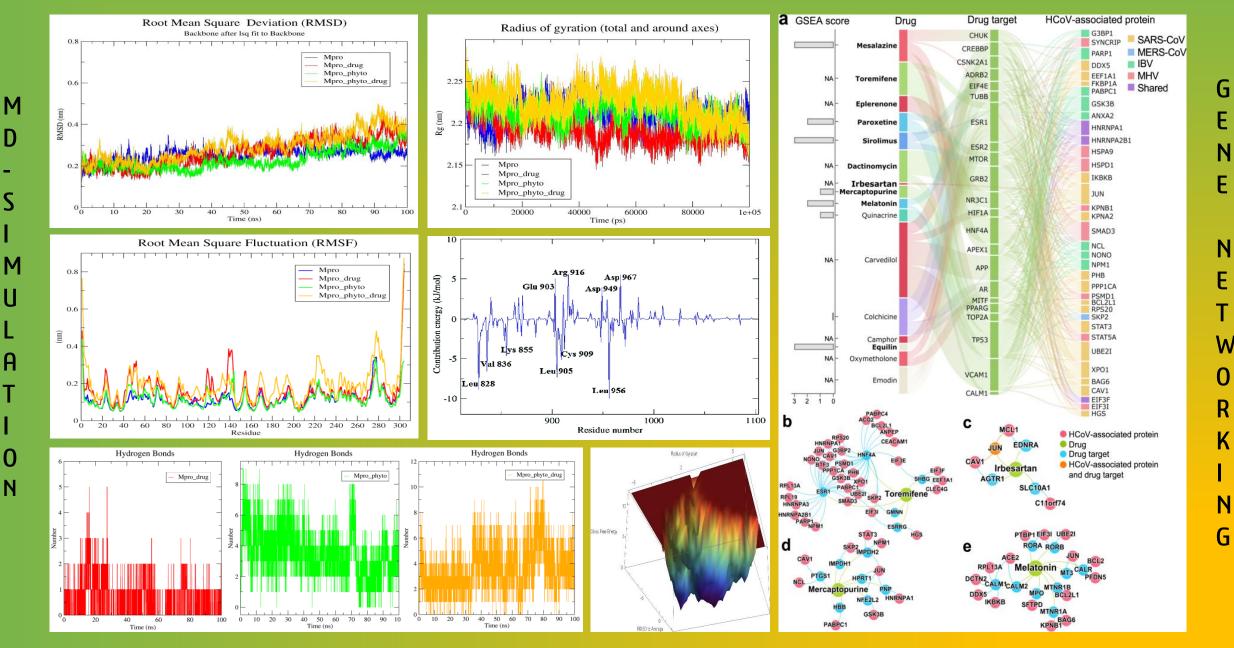


https://en.wikipedia.org/wiki/List_of_protein-ligand_docking_software


PROTEIN-LIGAND INTERACTION



SARS-CoV-Mpro (PDB ID: 6Y2E)-Darunavir



SARS-CoV-Mpro -Quercetin-3-rhamnoside

ADVANCED BIOINFORMATICS TOOLS IN DRUG DISCOVERY

U

0

Ν

CONCLUDING REMARKS

Various common advantages of computational method drug design as follows •To reduce the complexity Time consuming Accurate results •Reproducibility •Lower cost Novel target identification Major advantages of computation in the drug design process as follows •Virtual screening and de novo drug design •In silico pharmacokinetic properties prediction •Improved methods for to determine protein-ligand binding.

Thank you for your patience

STAY HOME .. STAY HEALTHY FROM

